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Abstract

In this introduction to artificial neural networks we
attempt to give an overview of the most important types
of neural networks employed in engineering and explain
shortly how they operate and also how they relate to bio-
logical neural networks. The focus will mainly be on
bio-inspired artificial neural network architectures and
specifically to neo-perceptrons. The latter belong to the
family of convolutional neural networks. Their topology
is somewhat similar to the one of the human visual cor-
tex and they are based on receptive fields that allow, in
combination with sub-sampling layers, for an improved
robustness with regard to local spatial distortions. We
demonstrate the application of artificial neural networks
to face analysis — a domain we human beings are parti-
cularly good at, yet which poses great difficulties for
digital computers running deterministic software pro-
grams.

Key words : Artificial neural networks ; artificial
neurons ; biological neural networks ; face detection ;
facial expression recognition.

Introduction

Artificial neural networks (ANNs) are programs
designed to operate functionally similar to biologi-
cal nervous systems. They are based on simulated
nerve cells or neurons, which are interconnected in
a variety of ways to form networks that have the
capacity to learn, memorize and create relation-
ships amongst data. There are many different types
of ANNSs and their architecture depends on the type
of task envisaged. The application of artificial
neural networks is broad, however, we can distin-
guish a few representative categories, namely clas-
sification, forecasting and modeling. ANNs have
some characteristics, which may favor them over
other data analysis methods, e.g. they can deal with
non-linearities of the world we live in, handle noisy
or missing data and can work with a large number
of variables. Artificial neural networks use highly
distributed representations and transformations that
operate in parallel. Therefore, ANNs are also some-
times called parallel distributed processing sys-
tems, which emphasizes the way in which the many

nodes or neurons in a neural network operate in
parallel.

Artificial Neural Networks are useful for a varie-
ty of applications. Originally developed as tools for
the exploration and reproduction of human infor-
mation processing tasks such as speech, vision,
olfaction, touch, knowledge processing and motor
control, they are nowadays employed for a variety
of engineering tasks such as data compression,
optimization, pattern recognition, system modeling,
function approximation and control. For example in
pattern recognition, the following tasks have been
tackled : reading zip codes on envelopes (12),
damage to clothes by washing powders (2), finan-
cial trading (15) and predicting suitable habitats for
Tsetse flies (16). The theory that inspires neural
network systems is drawn from many disciplines ;
primarily from neuroscience, engineering and
computer science, but also from mathematics,
physics, psychology and linguistics. These sciences
are working toward the common goal of building
intelligent systems.

Artificial Neural Networks vs. Biological
Neural Networks

Artificial Neural Networks (ANNs) are compu-
tational paradigms which implement simplified
models of their biological counterparts : biological
neural networks. Biological neural networks are
assemblages of neurons and they share with artifi-
cial neural networks the following characteristics :

— Local information processing in neurons

— Massively parallel processing via interconnected
neurons

— Acquire knowledge via learning from experien-
ce (a synapse’s strength may be modified by
experience)

— Information storage in distributed memory
(long-term memory resides in the neurons’
synapses, while short-term memory corresponds
to signals passing through neurons)

Artificial neural networks learn from training
data and represent a class of algorithms that allow
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Fic. 1. — Local signal processing in neurons : shown is a representation of a biological neuron on the left hand side and a schematic

of an artificial neuron on the right hand side.

for statistical modeling and prediction. The aim of
neural networks is to produce a statistical models
of the underlying processes from which the training
data were generated in order to allow for the best
possible handling of new data. Note that data pro-
cessed by artificial neural networks are vectors or
matrices representing any kind of signals, such as
images, audio, etc. Artificial neural networks are
usually determined by following properties :

— Architecture ; its pattern of connections
between the neurons as well as the number of
neurons, their respective activation functions and
the number of employed layers

— Learning Algorithm ; its method of determi-
ning the weights on the connections

Generally speaking, we can distinguish three
different types of statistical modeling problems,
namely density estimation, regression and classifi-
cation. In the following sections we first introduce
artificial neurons and networks, before addressing
network training and generalization in more detail.

ARTIFICIAL NEURONS

An artificial neural network consists of a large
number of processing elements, called neurons.
Each neuron has an internal state, called activation
or activity level, which is a function of the inputs it
has received. Typically, a neuron sends its activa-
tion as a signal to several other neurons. A neuron
can send only one signal at a time, although that
signal may be broadcasted to several other neurons.
A biological neuron has three types of components
that are of particular interest in understanding an
artificial neuron : its dendrites, soma and axon. The
many dendrites receive signals from other neurons
and convey these signals via synapses towards the

soma, or cell body. The soma and the enclosed
nucleus don’t play a significant role in the proces-
sing of incoming and outgoing data. Their primary
function is to perform the continuous maintenance
required to keep the neuron functional. The part of
the soma that does concern itself with the signal is
the axon hillock. If the aggregate input is greater
than the axon hillock’s threshold value, then the
neuron fires, and an output signal is transmitted
down the axon. The strength of the output is con-
stant, regardless of whether the input was just above
the threshold, or a hundred times as great. The out-
put strength is unaffected by the many divisions in
the axon ; it reaches each terminal button with the
same intensity it had at the axon hillock. This uni-
formity is critical in an analogue device such as a
brain, where small errors can snowball, and where
error correction is more difficult than in a digital
system. Each terminal button is connected to other
neurons across a small gap called a synapse.

Figure 1 shows both a schematic of a biological
and an artificial neuron. The latter operate from the
point of view of signal processing similarly to their
biological counterparts. Signals flowing into the
neuron’s node are modified via weights by multi-
plying the transmitted signal. The neuron’s node
sums the incoming signals and applies a threshold
function, also called activation function. Under
appropriate circumstances (sufficient input), the
neuron transmits a single output. The output from a
particular neuron may go to many other neurons
(through the axon branches).

Note that artificial neurons are only similar in
the way they process information, when compared
to biological neurons. They are often implemented
in software and represent nothing else than a
mathematical function and mimic only the proces-
sing capabilities of the latter. Also note that even
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Fic. 2. — Depicted on the left hand side is a schematic of a biological neural network, while on the right hand side is shown the

architecture of an artificial neural network.

though artificial neurons can be implemented in
hardware and embedded in electronic artificial
neural networks to operate in a truly parallel
fashion, they are mostly implemented in software
and run on a sequential digital computer with quan-
tized weights. However, in the latter case, informa-
tion processing is still done in parallel.

ARTIFICIAL NEURAL NETWORKS

There are many different artificial neural net-
work architectures. No single neural network archi-
tecture is best ; rather, different architectures are
useful for different applications. The most com-
monly used feed-forward type ANN encompass
Multilayer Perceptrons (MLP) and Radial Basis
Function (RBF) networks. The former operate in a
global mode, where basis functions in the hidden
layer cover a significant part of the input space, this
in contrast to RBFs, which are referred to being
local due to their respective basis functions suppor-
ting local regions in the input space. Figure 2
shows both a schematic of a biological and an arti-
ficial neural network architecture. Note that there
exist more complex artificial network architectures,
such as recurrent neural networks, which feature
feed-back connections in addition to feed-forward
connections. Feed-back connections allow them to
learn context information, which is important for
series predictions.

NETWORK TRAINING

In contrast to classical Artificial Intelligence
(AI) approaches, ANNs with dynamic weights are
not constructed using explicit rules, but statistical
properties are learned from data and hyperplanes
are formed that allow to separate different classes

(see Fig. 3). The implicitly extracted rules are
mostly not semantically accessible, even though
the training methods and the network architecture,
including the neuron interconnections as well as
the number and type of neurons, are well known.
The training algorithm plays an important role in
any neural network. The latter is the process which
modifies the weights and biases of the neurons,
which in turn allows networks to associate certain
input data patterns to certain output values. We can
identify three types of learning :

— Fixed weights : In this case, no learning occurs
(explicit rules are compiled into the network)

— Supervised training : Each input pattern (vec-
tor) is associated with a target output pattern
(vector)

— Unsupervised training : No target outputs are
specified (with the exception of auto-associative
networks, where the targets are the same as the
inputs)

Supervised training of ANNS is achieved by dif-
ferent algorithms that have often not very much in
common with the way biological neural networks
learn. These algorithms attempt to minimize the
error between desired target values and output
values of networks to be trained. Training samples
together with desired target values are repeated in
epochs until a stopping condition is met or a pre-set
number of repetitions has occurred. The most com-
monly used algorithm for supervised training is the
so called backpropagation algorithm (18), which
uses the generalized delta rule. It is a gradient des-
cent method that attempts to minimize the total
squared error between the desired target value and
the network output, where the computed negative
of the gradient determines the direction in which
the error function decreases most rapidly and thus
weight updates are performed to realize this. There
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FiG. 3. — On the left hand side we can see an example for class discrimination by a hyperplane, whose position was determined
during the training of the network (in this simple case being a line) and on the right hand side is given an illustration for clustering
(with class representatives found using an unsupervised approach). Note that in both cases one point will be misclassified, respecti-

vely, falls into the wrong cluster.

are various algorithms for unsupervised training,
the simplest and earliest rule for artificial neural
networks is generally known as the Hebb rule (8).
Unsupervised competitive learning is used in a
wide variety of fields under a wide variety of
names, the most common of which is cluster ana-
lysis, compression and data visualization.

NETWORK GENERALIZATION

One of the advantages of neural networks is their
good natured degradation with regard to noisy
inputs or missing data as well as their generaliza-
tion performance. By training a neural network, we
separate the output space into regions ; of course,
the trained neural network will not only separate
(classify) known input data patterns, but will also
separate previously unseen data patterns. The abili-
ty of a neural network to correctly classify input
data patterns that it has not seen before (has not
been trained on) is termed generalization.

Bio-Inspired Neural Network Architectures

In this section we introduce a few representative
ANNSs that were not only inspired from biological
neural networks by the way information is proces-
sed locally in nodes and transmitted over connec-
tions to other nodes, but neural network architectu-
res that resemble also more closely their biological
counter-parts with regard to the type of signals that
can be measured at the output of neurons (spiking
neural networks), and also with regard to the inter-
connections and the flow that resembles more clo-
sely to filter banks that can be found e.g. in the
visual cortex.

SPIKING NEURAL NETWORKS

Most ANNs employed nowadays use analog out-
put neurons (with rational or real output values),

this in spite that biological neurons encoding infor-
mation in succession of pulses and not via signal
amplitude. Spiking neurons closely model biologi-
cal neurons in that that they emit pulse trains
(spikes) and encode information temporally. Net-
works based on these type of neurons are called
spiking neural networks (SNNs), also called pulsed
neural networks. Because of this, a SNN is well
suited for applications, where the timing of input
signals carries important information (e.g., speech
recognition and other signal-processing applica-
tions). SNNs are capable of exploiting time as a
resource for coding and computation. However,
they can be applied to the same problems as non-
spiking neural networks, albeit often with substan-
tially fewer gates, see also (14).

CLUSTERING APPROACHES

Unsupervised neural network based clustering
approaches allow to simulate topological sensory
maps found in the brain. The self-organizing map
(SOM) (11) is an unsupervised competitive network
that has the ability to form topology-preserving
between its input and output spaces. The defining
characteristic of competitive nets is that they choo-
se one or more output neurons that will respond to
any given input pattern, instead of providing an
output pattern using all output neurons. The con-
nection weights serve as a cluster exemplar (or
class representatives, see Fig. 3) instead of an input
scaling function. Only the winning unit and neigh-
boring units (in terms of the network topology, not
in terms of weight vector similarity) update their
weights.

Another unsupervised clustering approach is the
adaptive resonance theory (ART) network (7),
which has the ability to plastically adapt, when
presented with new input patterns, while remaining
stable at previously seen input patterns.
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CoNVOLUTIONAL NEURAL NETWORKS

Neo-perceptrons (13) as well as the topological-
ly similar Neo-Cognitrons (6), are bio-inspired
hierarchical multi-layered convolutional neural
network (CNN) architectures that model to some
degree characteristics of the human visual cortex
and encompass scale and translation invariant
feature extraction layers. Neo-perceptrons can be
applied directly on high-dimensional raw input
images, whereby weight-sharing efficiently redu-
ces the model complexity. Neo-perceptron are ope-
rated and trained similar to MLPs (supervised
training via back-propagation algorithm). However,
in contrast to the latter, they don’t feature full con-
nectivity, instead, different neuron groups extract
salient features from the preceding layers or the
input image. Thus, the network is forced to learn
local feature extractors. Convolutional neural net-
works employ both simple and complex feature
extractors that allow for robust object analysis with
regard to spatial variations. A sample application of
a neo-perceptron to facial expression recognition is
described further below.

ASSOCIATIVE MEMORIES

Content-addressed or associative memory refers
to a memory organization in which the memory is
accessed by its content (as opposed to an explicit
address). Thus, reference clues are associated with
actual memory contents until a desirable match (or
set of matches) is found. Associative memory
stands as the most likely model for cognitive
memories. Humans retrieve information best when
it can be linked to other related information.

Associative memories can also be built with arti-
ficial neural networks. We distinguish two broad
types of artificial associative memories :

— Auto-associative Memories : An associative
memory is a system which stores mappings of
specific input representations to specific output
representations, or in other words, a system that
associates two patterns such that when one is
encountered subsequently, the other can be relia-
bly recalled. The Hopfield model (9) is a good
example for such a memory and is used as an
auto-associative memory to store and recall a set
of bitmap images. Given an incomplete or cor-
rupted version of a stored image, the network is
able to recall the corresponding original image.

— Hetero-associative Memories : Bidirectional
associative memory can be viewed as a generali-
zation of the Hopfield model and allow for a
hetero-associative memory to be implemented
that can e.g. the association between names and
corresponding phone numbers. After training
such a network, when presented with a name, it
would be able to recall the corresponding phone

number and vice versa. An example for a hetero-
associative memory is Rosenblatt’s percep-
tron (17).

Sample Applications : Face Analysis

Relatively simple artificial neural network archi-
tectures can cope surprisingly well with problems
we human beings are good at, yet where traditional
engineering approaches have difficulties. Face detec-
tion, face recognition and facial expression analysis
are such tasks. In the following sections we present
an automatic face detection and a facial expression
recognition implementation that are based on two
different artificial neuron network architectures.

AutoMATIC FACE DETECTION

As a first example of an artificial neural network
application, we present a fully connected feed-
forward multilayer perceptrons (MLP) that has
been trained to detect faces in cluttered scenes
(Fig. 4). The trained network is able to detect faces
reliably using a mere 30 neurons in total. It detects
faces by sliding a window of the size of a face
through a given test image. At locations where
there is a face present in the image, a value close to
one can be measured at the output of the network.
If there is no face present at the current location of
the sliding window, the output value is close to
zero. Neural networks give a probabilistic output
and can miss-classify objects, thus make errors.
The achieved correct recognition rate was in the
range of 70-75% on a standard database, see (1) for
details. The generalization performance of the
network is demonstrated in the photo situated on
bottom part of the right hand side of Figure 4,
which shows that the network was also able to
detect hand-drawn faces, even though it was trained
only on photos of human faces.

AUTOMATIC FACIAL EXPRESSION RECOGNITION

Another application is facial expression recogni-
tion. This task is more complicated than face detec-
tion, as there are not only two classes to be separa-
ted (faces and non-faces), but a variety of different
facial expressions. We have employed convolution-
al neural networks for automatic facial expression
analysis, a task, where we have to cope with head
pose and lighting variations. Especially pose varia-
tions are difficult to tackle and many face analysis
approaches presented in the literature require the
use of sophisticated normalization and initializa-
tion procedures. Our data-driven face analysis
approach is not only capable of extracting features
relevant to the given task at hand, but is also more
robust with regard to face location changes and
scale variations, when compared to more tradition-
al approaches such as e.g. multi-layer perceptrons
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of a convolutional neural network (neo-perceptron) that has been trai-
side are shown sample facial expressions of 9 subjects on top and some

artificially introduced head pose variations for one subject and expression on the bottom.

(MLPs). We applied different neural network archi-
tectures, both for shape and motion recognition (4).
Furthermore, we combined face identity recogni-
tion with facial expression recognition in order to
obtain personalized facial expression recognition,
which allowed to improve correct recognition
results (5). Figure 5 shows the architecture of a
convolutional neural network we employed for
facial expression recognition. Note that the net-
work architecture is composed of two parts, name-
ly the first four layers that operate as feature extrac-
tors and the last layer that contains a fully connected
MLP classifier. Hereby, the first layer of the CNN
extracts simple features, while the third layer com-
bines the inputs from the preceding layer into com-
plex features. Layer two and four are sub-sampling
layers that allow to reduce the dependency with
regard to the exact location of the extracted featu-
res. The convolutional feature extractors operate

like a filterbank, whose characteristics are learned
from the data and which is optimally suited for the
given task at hand. We obtained correct recognition
rates of up to 90% for 6 basic emotions and neutral
face displays on a database containing 10 female
Japanese and correct recognition rates in the range
of 50-80% for the same database, but with artifi-
cially increased head pose variations.

Conclusion

Artificial neural networks are powerful compu-
ter paradigms that allow to solve complex problems
in engineering that would otherwise be difficult to
tackle. Even very small neural networks — e.g.
compare the afore mentioned neural network
employed for face detection — often allow to achie-
ve surprisingly good results.



12 B. FASEL

Today, the human brain is still mostly — what
engineers call — a black box, especially what con-
cerns higher level operations encompassing reaso-
ning and emotions. It is possible to study human
behavior from the outside, as attempt psychologist
and linguists or measure brain activities by using
dynamic imaging techniques such as positron
emission tomography (PET) or by measuring skin
surface potential changes through electro-encepha-
lography (EEG), transplanting electrodes directly
into the living tissue or study the brain’s architec-
ture under a microscope.

However, all these approaches give limited
insight into the mechanism of the brain and do not
always allow to verify theories of how neurons
communicate and complex associations occur in
the brain, respectively, of how information is pro-
cessed, associated, stored and represented. In this
context, artificial neural networks could give valu-
able feedback by providing models that allow to
verify theories about the brain’s functioning.

Great advances have been made interfacing the
brain and replace the body’s sense with artificial
sensors, such as artificial retinas (3, 10) and coch-
lea implants (19). In the future, we might also be
able to directly replace certain parts of the brain by
artificial implants, driven by artificial neural netw-
orks.
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